Negative correlation of adjacent Busemann increments
نویسندگان
چکیده
Nous considérons la percolation de dernier passage i.i.d. sur Z2 avec des poids loi F et constante temporelle gF. donnons une condition explicite fonction taux grande déviation somme variables aléatoires indépendantes F, qui détermine quand certains accroissements Busemann adjacents sont négativement corrélés. À titre d’exemple nous montrons que les Bernoulli(p) p>p∗≈0.6504 vérifient cette condition. obtenons en établissant un lien direct entre corrélations négatives domination gF par décrit temps exponentiels ou géométriques.
منابع مشابه
Increments of Random Partitions
For any partition of {1, 2, . . . , n} we define its increments Xi, 1 ≤ i ≤ n by Xi = 1 if i is the smallest element in the partition block that contains it, Xi = 0 otherwise. We prove that for partially exchangeable random partitions (where the probability of a partition depends only on its block sizes in order of appearance), the law of the increments uniquely determines the law of the partit...
متن کاملNegative correlation and log-concavity
OF THE DISSERTATION Negative correlation and log-concavity by Michael Neiman Dissertation Director: Jeff Kahn This thesis is concerned with negative correlation and log-concavity properties and relations between them, with much of our motivation provided by [40], [46], and [12]. Our main results include a proof that “almost exchangeable” measures satisfy the “FederMihail” property; counterexamp...
متن کاملLocal Negative Correlation with Resampling
This paper deals with a learning algorithm which combines two well known methods to generate ensemble diversity error negative correlation and resampling. In this algorithm, a set of learners iteratively and synchronously improve their state considering information about the performance of a fixed number of other learners in the ensemble, to generate a sort of local negative correlation. Resamp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1236